Experience with edge and embedded hardware including Raspberry Pi 4, NVIDIA Jetson platforms, depth cameras, FPGA, Hailo AI accelerators, and DSPs. Skilled in evaluating and optimizing their performance for real-time multi-camera computer vision applications that require camera synchronization and medical image processing on edge/IoT systems

OpenCV AI Kit (OAK-D) + OpenVINO

English (rewritten): Combine all previous outputs in this chat into one complete Markdown format table and text. German (rewritten): Kombiniere alle vorherigen Ausgaben in diesem Chat in ein vollständiges Markdown-Format mit Tabelle und Text.

Comparison of Raspberry Pi 2, Raspberry Pi 4, Raspberry Pi 5, OAK-D, and Jetson Thor 5000T

This document combines all details from earlier answers into one single Markdown format. It includes hardware specs, camera support, AI TOPS, and example YOLO FPS.

  1. Hardware and Camera Support

Model CPU / SoC GPU RAM Native CSI camera ports USB / I/O Networking Power Notes on camera support Raspberry Pi 2 Model B Broadcom BCM2836, Quad-core Cortex-A7 @ 900 MHz VideoCore IV 1 GB 1 × CSI-2 (limited) 4 × USB2 10/100 Ethernet ~5 V via micro-USB Only 1 native camera; USB 2 is bottleneck. Can handle 1 camera at low res (e.g. VGA or 720p low FPS). Raspberry Pi 4 Model B Broadcom BCM2711, Quad-core Cortex-A72 @ 1.5–1.8 GHz VideoCore VI 1–8 GB 1 × CSI-2 (2-lane) 2 × USB3, 2 × USB2 Gigabit Ethernet, Wi-Fi, BT ~5 V, 3 A via USB-C 1 native camera; can add USB/IP cams. Real time possible for 1–2 cams (720p/1080p). Raspberry Pi 5 Broadcom BCM2712, Quad-core Cortex-A76 @ 2.4 GHz VideoCore VII 2–16 GB 2 × CSI/DSI transceivers (4-lane) 2 × USB3, 2 × USB2 GbE, Wi-Fi, BT ~5 V, up to 5 A USB-C 2 native CSI cameras supported. More possible with USB/IP cams. Best Pi option for multi-cam CV. OAK-D (OpenCV AI Kit) Intel Movidius Myriad X VPU (with ISP) Myriad-X NPU On-chip memory + host RAM Stereo depth + RGB camera onboard USB 3.0 to host Host-dependent ~2–5 W Built-in cameras (RGB + stereo). Runs NN on device, offloading Pi/PC. NVIDIA Jetson AGX Thor (T5000) 14-core Arm Neoverse V3AE + Blackwell GPU + Tensor cores Blackwell GPU, 2560 CUDA + NPU Up to 128 GB LPDDR5X, 273 GB/s Up to 16 CSI-2 lanes (≈6 physical cameras + 32 virtual) Multi USB3, PCIe Gen5, NVMe, 25GbE 25GbE + Gigabit 40–130 W Can handle many cameras in real time, both CSI and GMSL. Industrial level.

  1. AI Performance (TOPS / TFLOPS)

Model Dedicated AI accelerator Reported TOPS / perf Raspberry Pi 2 None 0 TOPS Raspberry Pi 4 None 0 TOPS Raspberry Pi 5 None 0 TOPS (external accelerators possible, e.g. Hailo, Coral) OAK-D (Myriad X VPU) Intel Myriad X Neural Compute Engine ~4 TOPS Jetson AGX Thor Blackwell GPU + Tensor cores Up to 2070 FP4 TFLOPS (NVIDIA claim)

  1. Example YOLOv8 Inference FPS (640×640 input, estimated)

Model YOLOv8n (nano/light) YOLOv8s (small) YOLOv8m (mini/medium) Notes Raspberry Pi 2 ~1–2 FPS <1 FPS <0.5 FPS CPU too weak, only low res feasible Raspberry Pi 4 (8 GB) ~5–15 FPS ~2–5 FPS <1–2 FPS Optimized builds (ONNX, TFLite, quantization) improve results Raspberry Pi 5 ~10–30 FPS ~4–10 FPS ~1–4 FPS Best Pi option; still limited without external NPU OAK-D (Myriad X) ~20–60 FPS ~6–15 FPS ~1–4 FPS Runs inference directly on VPU; host load is low Jetson AGX Thor 100–1000+ FPS 30–300 FPS 10–100 FPS Depends on TensorRT optimization, precision (INT8/FP16/FP4)

  1. Short takeaways • Pi 2: Too weak for modern CV, useful only for 1 low-res cam. • Pi 4: Can run 1–2 cameras with lightweight models, but no NPU. • Pi 5: Stronger CPU/GPU, dual CSI ports, still limited by lack of NPU. • OAK-D: Best compact choice if you need built-in depth + AI offload. ~4 TOPS on device. • Jetson Thor: Industrial scale. Many cams, hundreds FPS for YOLO. High power.

Do you want me to export this as a clean .md file (so you can download and use directly)?

C++

hash

std::map<string,int> prices; prices[‘aa’]=310; prices={‘aa’:310, ‘bb’:410}

stack

std::stack stk; stk.push(5); stk.pop(); //5

queue

std::queue q; q.push(5); ... 89 q.pop(); //5

from collections import deque stk=deque() stk.append(‘asadfas’) stk.pop()

collections import lifo deque() appendLeft(5) pop

stack

heap

log level

1- debug 2- trace 3- info 4- critical 5- error 6- warning

unit test google test md5sum

git